Permalink (الرابط القصير إلى هذا الباب): https://arabiclexicon.hawramani.com/?p=35739&book=26#e6c76f
(الأسطوانة) (انْظُر أسطوانة)
Permalink (الرابط القصير إلى هذا الباب): https://arabiclexicon.hawramani.com/?p=35739&book=26#edce67
الأسطوانة: شكل يحيط به دائرتان متوازيتان من طرفيه هما قاعدتان يتصل بهما سطح مستدير.
Permalink (الرابط القصير إلى هذا الباب): https://arabiclexicon.hawramani.com/?p=35739&book=26#b9d04f
(الأسطوانة)
العمود والسارية وَفِي الهندسة جسم صلب ذُو طرفين متساويين على هَيْئَة دائرتين متماثلتين تحصران سطحا ملفوفا بِحَيْثُ تمكن مُتَابَعَته بِخَط يَتَحَرَّك موازيا لنَفسِهِ وَيَنْتَهِي طرفاه فِي محيطي هَاتين الدائرتين وكل جسم أَو شَيْء ذِي شكل أسطواني يُسمى أسطوانة أَيْضا والقرص الَّذِي تسجل فِيهِ أصوات الْغناء أَو الموسيقا أَو غَيرهمَا (ج) أساطين (مَعَ) (وأساطين الْعلم أَو الْأَدَب) الثِّقَات المبرزون فِيهِ وهم أساطين الزَّمَان حكماؤه وأفراده مفرده أسطون مُعرب (أستون) الفارسية
Permalink (الرابط القصير إلى هذا الباب): https://arabiclexicon.hawramani.com/?p=35739&book=26#1e1b83
الأسطوانة: اعْلَم أَن الْجِسْم الَّذِي هُوَ ذُو الامتدادات الثَّلَاثَة الَّتِي هِيَ الطول وَالْعرض والعمق إِن أحاطه سطح وَاحِد بِحَيْثُ تتساوى الخطوط الْخَارِجَة من النقطة الَّتِي فِي دَاخل ذَلِك الْجِسْم إِلَى ذَلِك السَّطْح فَذَلِك الْجِسْم كرة وَتلك النقطة مركزها وَذَلِكَ السَّطْح محيطها والخطوط أَنْصَاف أقطارها وَالْخَارِج إِلَى الْمُحِيط فِي الْجِهَتَيْنِ قطرها. فَإِن كَانَ هُوَ الَّذِي تتحرك عَلَيْهِ الكرة يُسمى محورا وطرفاه قطبي الكرة وقطبي الْحَرَكَة ومنصف الكرة من الدَّوَائِر المتوهمة على بسيطها عَظِيمَة إِن مرت بمركزها وَإِلَّا فصغيرة. والنقطة الَّتِي فِي سطح الكرة وتتساوى الخطوط الْخَارِجَة مِنْهَا إِلَى مُحِيط قَاعِدَة الْقطعَة هِيَ قطبها. وَإِن أحَاط بالجسم سِتَّة مربعات مُتَسَاوِيَة فَذَلِك الْجِسْم مكعب وَإِن أحَاط بالجسم دائرتان متساويتان متوازيتان وسطح وَاصل بَين الدائرتين بِحَيْثُ لَو أدير خطّ مُسْتَقِيم وَاصل بَين محيطي الدائرتين على محيطها مَاس ذَلِك الْخط السَّطْح الْمَذْكُور بكله فِي كل الدورة فَذَلِك الْجِسْم أسطوانة وَهَاتَانِ الدائرتان قاعدتاها والخط الْوَاصِل بَين مركزيهما سهم الأسطوانة ومحورها. فَإِن كَانَ الْخط الْوَاصِل بَين المركزين عمودا على الْقَاعِدَة فالأسطوانة قَائِمَة وَإِلَّا فمائلة.
وَطَرِيق: معرفَة العمود أَنه إِذا قَامَ خطّ على سطح بِحَيْثُ لَو أخرج عَن مَوضِع قِيَامه عَلَيْهِ خطوط على الاسْتقَامَة أحاطت بِهِ على زَوَايَا قَوَائِم فَهُوَ عَمُود عَلَيْهِ. وَإِن أحَاط بالجسم دَائِرَة وَاحِدَة وسطح صنوبري مُرْتَفع من محيطها متضايقا إِلَى نقطة بِحَيْثُ لَو أدير خطّ مُسْتَقِيم وَاصل بَين مُحِيط الدائرة والنقطة مَاس ذَلِك السَّطْح الْجِسْم الْمَذْكُور بِكَلِمَة فِي كل الدورة فَذَلِك الْجِسْم مخروط إِمَّا قَائِم أَو مائل على قِيَاس مَا مر فِي الأسطوانة وَتلك الدائرة قَاعِدَة المخروط والخط الْوَاصِل بَين مركزها والنقطة الْمَذْكُورَة سَهْمه ومحوره. وَإِن قطع المخروط بسطح مستو يوازي قَاعِدَة المخروط فَمَا يَلِي الْقَاعِدَة من المخروط مخروط نَاقص وَمَا لم يكن يَليهَا مِنْهُ مخروط تَامّ وَقَاعِدَة المخروط والأسطوانة إِن كَانَت مضلعة فَكل مِنْهُمَا مضلع مثل الْقَاعِدَة وَإِن كَانَت مستديرة فمستديرة.